Detecting Sarcasm Using Different Forms Of Incongruity
نویسنده
چکیده
Sarcasm is a form of verbal irony that is intended to express contempt or ridicule. Often quoted as a challenge to sentiment analysis, sarcasm involves use of words of positive or no polarity to convey negative sentiment. Incongruity has been observed to be at the heart of sarcasm understanding in humans. Our work in sarcasm detection identifies different forms of incongruity and employs different machine learning techniques to capture them. This talk will describe the approach, datasets and challenges in sarcasm detection using different forms of incongruity. We identify two forms of incongruity: incongruity which can be understood based on the target text and common background knowledge, and incongruity which can be understood based on the target text and additional, specific context. The former involves use of sentiment-based features, word embeddings, and topic models. The latter involves creation of author’s historical context based on their historical data, and creation of conversational context for sarcasm detection of dialogue.
منابع مشابه
Harnessing Context Incongruity for Sarcasm Detection
The relationship between context incongruity and sarcasm has been studied in linguistics. We present a computational system that harnesses context incongruity as a basis for sarcasm detection. Our statistical sarcasm classifiers incorporate two kinds of incongruity features: explicit and implicit. We show the benefit of our incongruity features for two text forms tweets and discussion forum pos...
متن کاملSarcasm Suite: A Browser-Based Engine for Sarcasm Detection and Generation
Sarcasm Suite is a browser-based engine that deploys five of our past papers in sarcasm detection and generation. The sarcasm detection modules use four kinds of incongruity: sentiment incongruity, semantic incongruity, historical context incongruity and conversational context incongruity. The sarcasm generation module is a chatbot that responds sarcastically to user input. With a visually appe...
متن کاملExpect the Unexpected: Harnessing Sentence Completion for Sarcasm Detection
The trigram ‘I love being’ is expected to be followed by positive words such as ‘happy’. In a sarcastic sentence, however, the word ‘ignored’ may be observed. The expected and the observed words are, thus, incongruous. We model sarcasm detection as the task of detecting incongruity between an observed and an expected word. In order to obtain the expected word, we use Context2Vec, a sentence com...
متن کاملDetecting Sarcasm on Twitter: A Behavior Modeling Approach by Ashwin Rajadesingan A Thesis Presented in Partial Fulfillment of the Requirement for the Degree Master of Science Approved September 2014 by the Graduate Supervisory Committee: Huan Liu, Chair
Sarcasm is a nuanced form of language where usually, the speaker explicitly states the opposite of what is implied. Imbued with intentional ambiguity and subtlety, detecting sarcasm is a difficult task, even for humans. Current works approach this challenging problem primarily from a linguistic perspective, focussing on the lexical and syntactic aspects of sarcasm. In this thesis, I explore the...
متن کاملAre Word Embedding-based Features Useful for Sarcasm Detection?
This paper makes a simple increment to state-ofthe-art in sarcasm detection research. Existing approaches are unable to capture subtle forms of context incongruity which lies at the heart of sarcasm. We explore if prior work can be enhanced using semantic similarity/discordance between word embeddings. We augment word embedding-based features to four feature sets reported in the past. We also e...
متن کامل